Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116254, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547729

RESUMO

Heavy metal exposure leads to multiple system dysfunctions. The mechanisms are likely multifactorial and involve inflammation and oxidative stress. The aim of this study was to evaluate markers and risk factors for atherosclerosis in the LDL receptor knockout mouse model chronically exposed to inorganic mercury (Hg) in the drinking water. Results revealed that Hg exposed mice present increased plasma levels of cholesterol, without alterations in glucose. As a major source and target of oxidants, we evaluated mitochondrial function. We found that liver mitochondria from Hg treated mice show worse respiratory control, lower oxidative phosphorylation efficiency and increased H2O2 release. In addition, Hg induced mitochondrial membrane permeability transition. Erythrocytes from Hg treated mice showed a 50% reduction in their ability to take up oxygen, lower levels of reduced glutathione (GSH) and of antioxidant enzymes (SOD, catalase and GPx). The Hg treatment disturbed immune system cells counting and function. While lymphocytes were reduced, monocytes, eosinophils and neutrophils were increased. Peritoneal macrophages from Hg treated mice showed increased phagocytic activity. Hg exposed mice tissues present metal impregnation and parenchymal architecture alterations. In agreement, increased systemic markers of liver and kidney dysfunction were observed. Plasma, liver and kidney oxidative damage indicators (MDA and carbonyl) were increased while GSH and thiol groups were diminished by Hg exposure. Importantly, atherosclerotic lesion size in the aorta root of Hg exposed mice were larger than in controls. In conclusion, in vivo chronic exposure to Hg worsens the hypercholesterolemia, impairs mitochondrial bioenergetics and redox function, alters immune cells profile and function, causes several tissues oxidative damage and accelerates atherosclerosis development.


Assuntos
Aterosclerose , Hipercolesterolemia , Mercúrio , Animais , Camundongos , Aterosclerose/induzido quimicamente , Peróxido de Hidrogênio , Nefropatias , Mercúrio/toxicidade , Camundongos Knockout , Estresse Oxidativo/fisiologia , Receptores de LDL/genética
2.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36139808

RESUMO

Plasma cholesteryl ester transfer protein (CETP) activity diminishes HDL-cholesterol levels and thus may increase atherosclerosis risk. Experimental evidence suggests CETP may also exhibit anti-inflammatory properties, but local tissue-specific functions of CETP have not yet been clarified. Since oxidative stress and inflammation are major features of atherogenesis, we investigated whether CETP modulates macrophage oxidant production, inflammatory and metabolic profiles. Comparing macrophages from CETP-expressing transgenic mice and non-expressing littermates, we observed that CETP expression reduced mitochondrial superoxide anion production and H2O2 release, increased maximal mitochondrial respiration rates, and induced elongation of the mitochondrial network and expression of fusion-related genes (mitofusin-2 and OPA1). The expression of pro-inflammatory genes and phagocytic activity were diminished in CETP-expressing macrophages. In addition, CETP-expressing macrophages had less unesterified cholesterol under basal conditions and after exposure to oxidized LDL, as well as increased HDL-mediated cholesterol efflux. CETP knockdown in human THP1 cells increased unesterified cholesterol and abolished the effects on mitofusin-2 and TNFα. In summary, the expression of CETP in macrophages modulates mitochondrial structure and function to promote an intracellular antioxidant state and oxidative metabolism, attenuation of pro-inflammatory gene expression, reduced cholesterol accumulation, and phagocytosis. These localized functions of CETP may be relevant for the prevention of atherosclerosis and other inflammatory diseases.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35276383

RESUMO

The occurrence of hepatic lipidosis is commonly reported in different reptilian species, especially in animals under captivity. Liver accumulation of fat is associated with disorders, better described in mammals as non-alcoholic fatty liver diseases (NAFLD), ranging from simple steatosis, to non-alcoholic steatohepatitis (NASH), and to more severe lesions of cirrhosis and hepatocellular carcinoma. Mitochondria play a central role in NAFLD pathogenesis, therefore in this study we characterized livers of ad libitum fed captive red-footed tortoise Chelonoidis carbonaria through histological and mitochondrial function evaluations of juvenile and adult individuals. Livers from adult tortoises exhibited higher levels of lipids, melanomacrophages centers and melanin than juveniles. The observed high score levels of histopathological alterations in adult tortoises, such as microvesicular steatosis, inflammation and fibrosis, indicated the progression to a NASH condition. Mitochondrial oxygen consumption at different respiratory states and with different substrates was 30 to 58% lower in adult when compared to juvenile tortoises. Despite citrate synthase activity was also lower in adults, cardiolipin content was similar to juveniles, indicating that mitochondrial mass was unaffected by age. Mitochondrial Ca2+ retention capacity was reduced by 70% in adult tortoises. Overall, we found that aggravation of NAFLD in ad libitum fed captive tortoises is associated with compromised mitochondrial function, indicating a critical role of the organelle in liver disease progression in reptiles.


Assuntos
Lipidoses , Hepatopatia Gordurosa não Alcoólica , Tartarugas , Animais , Fígado , Mamíferos , Mitocôndrias , Mitocôndrias Hepáticas
4.
Eur J Pharmacol ; 917: 174750, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032488

RESUMO

The mechanisms by which a high-fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunction and redox imbalance. The functional loss of the enzyme NAD(P)+ transhydrogenase, a main source of mitochondrial NADPH, results in impaired mitochondrial peroxide removal, pyruvate dehydrogenase inhibition by phosphorylation, and progression of NAFLD in HFD-fed mice. The present study aimed to investigate whether pharmacological reactivation of pyruvate dehydrogenase by dichloroacetate attenuates the mitochondrial redox dysfunction and the development of NAFLD in NAD(P)+ transhydrogenase-null (Nnt-/-) mice fed an HFD (60% of total calories from fat). For this purpose, Nnt-/- mice and their congenic controls (Nnt+/+) were fed chow or an HFD for 20 weeks and received sodium dichloroacetate or NaCl in the final 12 weeks via drinking water. The results showed that HFD reduced the ability of isolated liver mitochondria from Nnt-/- mice to remove peroxide, which was prevented by the dichloroacetate treatment. HFD-fed mice of both Nnt genotypes exhibited increased body and liver mass, as well as a higher content of hepatic triglycerides, but dichloroacetate treatment attenuated these abnormalities only in Nnt-/- mice. Notably, dichloroacetate treatment decreased liver pyruvate dehydrogenase phosphorylation levels and prevented the aggravation of NAFLD in HFD-fed Nnt-/- mice. Conversely, dichloroacetate treatment elicited moderate hepatocyte ballooning in chow-fed mice, suggesting potentially toxic effects. We conclude that the protection against HFD-induced NAFLD by dichloroacetate is associated with its role in reactivating pyruvate dehydrogenase and reestablishing the pyruvate-supported liver mitochondrial capacity to handle peroxide in Nnt-/- mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica
5.
J Atheroscler Thromb ; 29(6): 825-838, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34092712

RESUMO

AIM: Atherosclerosis is responsible for high morbidity and mortality rates around the world. Local arterial oxidative stress is involved in all phases of atherosclerosis development. Mitochondria is a relevant source of the oxidants, particularly under certain risky conditions, such as hypercholesterolemia. The aim of this study was to test whether lowering the production of mitochondrial oxidants by induction of a mild uncoupling can reduce atherosclerosis in hypercholesterolemic LDL receptor knockout mice. METHODS: The mice were chronically treated with very low doses of DNP (2,4-dinitrophenol) and metabolic, inflammatory and redox state markers and atherosclerotic lesion sizes were determined. RESULTS: The DNP treatment did not change the classical atherosclerotic risk markers, such as plasma lipids, glucose homeostasis, and fat mass, as well as systemic inflammatory markers. However, the DNP treatment diminished the production of mitochondrial oxidants, systemic and tissue oxidative damage markers, peritoneal macrophages and aortic rings oxidants generation. Most importantly, development of spontaneous and diet-induced atherosclerosis (lipid and macrophage content) were significantly decreased in the DNP-treated mice. In vitro, DNP treated peritoneal macrophages showed decreased H2O2 production, increased anti-inflammatory cytokines gene expression and secretion, increased phagocytic activity, and decreased LDL-cholesterol uptake. CONCLUSIONS: These findings are a proof of concept that activation of mild mitochondrial uncoupling is sufficient to delay the development of atherosclerosis under the conditions of hypercholesterolemia and oxidative stress. These results promote future approaches targeting mitochondria for the prevention or treatment of atherosclerosis.


Assuntos
Aterosclerose , Hipercolesterolemia , Animais , Aterosclerose/metabolismo , Humanos , Peróxido de Hidrogênio , Hipercolesterolemia/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Oxidantes/metabolismo
6.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34904632

RESUMO

The interaction between supraphysiological cytosolic Ca2+ levels and mitochondrial redox imbalance mediates the mitochondrial permeability transition (MPT). The MPT is involved in cell death, diseases and aging. This study compared the liver mitochondrial Ca2+ retention capacity and oxygen consumption in the long-lived red-footed tortoise (Chelonoidis carbonaria) with those in the rat as a reference standard. Mitochondrial Ca2+ retention capacity, a quantitative measure of MPT sensitivity, was remarkably higher in tortoises than in rats. This difference was minimized in the presence of the MPT inhibitors ADP and cyclosporine A. However, the Ca2+ retention capacities of tortoise and rat liver mitochondria were similar when both MPT inhibitors were present simultaneously. NADH-linked phosphorylating respiration rates of tortoise liver mitochondria represented only 30% of the maximal electron transport system capacity, indicating a limitation imposed by the phosphorylation system. These results suggested underlying differences in putative MPT structural components [e.g. ATP synthase, adenine nucleotide translocase (ANT) and cyclophilin D] between tortoises and rats. Indeed, in tortoise mitochondria, titrations of inhibitors of the oxidative phosphorylation components revealed a higher limitation of ANT. Furthermore, cyclophilin D activity was approximately 70% lower in tortoises than in rats. Investigation of critical properties of mitochondrial redox control that affect MPT demonstrated that tortoise and rat liver mitochondria exhibited similar rates of H2O2 release and glutathione redox status. Overall, our findings suggest that constraints imposed by ANT and cyclophilin D, putative components or regulators of the MPT pore, are associated with the enhanced resistance to Ca2+-induced MPT in tortoises.


Assuntos
Tartarugas , Animais , Cálcio/metabolismo , Peptidil-Prolil Isomerase F , Peróxido de Hidrogênio , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Permeabilidade , Ratos , Tartarugas/metabolismo
7.
Int Rev Cell Mol Biol ; 362: 261-289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34253297

RESUMO

Mitochondrial calcium ion (Ca2+) uptake is important for buffering cytosolic Ca2+ levels, for regulating cell bioenergetics, and for cell death and autophagy. Ca2+ uptake is mediated by a mitochondrial Ca2+ uniporter (MCU) and the discovery of this channel in trypanosomes has been critical for the identification of the molecular nature of the channel in all eukaryotes. However, the trypanosome uniporter, which has been studied in detail in Trypanosoma cruzi, the agent of Chagas disease, and T. brucei, the agent of human and animal African trypanosomiasis, has lineage-specific adaptations which include the lack of some homologues to mammalian subunits, and the presence of unique subunits. Here, we review newly emerging insights into the role of mitochondrial Ca2+ homeostasis in trypanosomes, the composition of the uniporter, its functional characterization, and its role in general physiology.


Assuntos
Cálcio/metabolismo , Homeostase , Mitocôndrias/metabolismo , Trypanosoma/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Humanos
8.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824204

RESUMO

Pyruvate is the final metabolite of glycolysis and can be converted into acetyl coenzyme A (acetyl-CoA) in mitochondria, where it is used as the substrate for the tricarboxylic acid cycle. Pyruvate availability in mitochondria depends on its active transport through the heterocomplex formed by the mitochondrial pyruvate carriers 1 and 2 (MPC1/MPC2). We report here studies on MPC1/MPC2 of Trypanosoma cruzi, the etiologic agent of Chagas disease. Endogenous tagging of T. cruziMPC1 (TcMPC1) and TcMPC2 with 3×c-Myc showed that both encoded proteins colocalize with MitoTracker to the mitochondria of epimastigotes. Individual knockout (KO) of TcMPC1 and TcMPC2 genes using CRISPR/Cas9 was confirmed by PCR and Southern blot analyses. Digitonin-permeabilized TcMPC1-KO and TcMPC2-KO epimastigotes showed reduced O2 consumption rates when pyruvate, but not succinate, was used as the mitochondrial substrate, while α-ketoglutarate increased their O2 consumption rates due to an increase in α-ketoglutarate dehydrogenase activity. Defective mitochondrial pyruvate import resulted in decreased Ca2+ uptake. The inhibitors UK5099 and malonate impaired pyruvate-driven oxygen consumption in permeabilized control cells. Inhibition of succinate dehydrogenase by malonate indicated that pyruvate needs to be converted into succinate to increase respiration. TcMPC1-KO and TcMPC2-KO epimastigotes showed little growth differences in standard or low-glucose culture medium. However, the ability of trypomastigotes to infect tissue culture cells and replicate as intracellular amastigotes was decreased in TcMPC-KOs. Overall, T. cruzi MPC1 and MPC2 are essential for cellular respiration in the presence of pyruvate, invasion of host cells, and replication of amastigotes.IMPORTANCETrypanosoma cruzi is the causative agent of Chagas disease. Pyruvate is the end product of glycolysis, and its transport into the mitochondrion is mediated by the mitochondrial pyruvate carrier (MPC) subunits. Using the CRISPR/Cas9 technique, we generated individual T. cruziMPC1 (TcMPC1) and TcMPC2 knockouts and demonstrated that they are essential for pyruvate-driven respiration. Interestingly, although glycolysis was reported as not an important source of energy for the infective stages, MPC was essential for normal host cell invasion and intracellular replication.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Protozoários/genética , Ácido Pirúvico/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Sistemas CRISPR-Cas , Replicação do DNA , Técnicas de Inativação de Genes , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/patogenicidade
9.
Cell Calcium ; 92: 102284, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32947181

RESUMO

In contrast to animal cells, the inositol 1,4,5-trisphosphate receptor of Trypanosoma cruzi (TcIP3R) localizes to acidocalcisomes instead of the endoplasmic reticulum. Here, we present evidence that TcIP3R is a Ca2+ release channel gated by IP3 when expressed in DT40 cells knockout for all vertebrate IP3 receptors, and is required for Ca2+ uptake by T. cruzi mitochondria, regulating pyruvate dehydrogenase dephosphorylation and mitochondrial O2 consumption, and preventing autophagy. Localization studies revealed its co-localization with an acidocalcisome marker in all life cycle stages of the parasite. Ablation of TcIP3R by CRISPR/Cas9 genome editing caused: a) a reduction in O2 consumption rate and citrate synthase activity; b) decreased mitochondrial Ca2+ transport without affecting the membrane potential; c) increased ammonia production and AMP/ATP ratio; d) stimulation of autophagosome formation, and e) marked defects in growth of culture forms (epimastigotes) and invasion of host cells by infective stages (trypomastigotes). Moreover, TcIP3R overexpressing parasites showed decreased metacyclogenesis, trypomastigote host cell invasion and intracellular amastigote replication. In conclusion, the results suggest a modulatory activity of TcIP3R-mediated acidocalcisome Ca2+ release on cell bioenergetics in T. cruzi.


Assuntos
Autofagia , Cálcio/metabolismo , Metabolismo Energético , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Autofagia/efeitos dos fármacos , Galinhas , Chlorocebus aethiops , Metabolismo Energético/efeitos dos fármacos , Inositol 1,4,5-Trifosfato/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Estágios do Ciclo de Vida/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mutação/genética , Fenótipo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento , Células Vero
10.
Mol Aspects Med ; 71: 100840, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31882067

RESUMO

In the first part of this review, we summarize basic mitochondrial bioenergetics concepts showing that mitochondria are critical regulators of cell life and death. Until a few decades ago, mitochondria were considered to play essential roles only in respiration, ATP formation, non-shivering thermogenesis and a variety of metabolic pathways. However, the concept presented by Peter Mitchell regarding coupling between electron flow and ATP synthesis through the intermediary of a H+ electrochemical potential leads to the recognition that the proton-motive force also regulates a series of relevant cell signalling processes, such as superoxide generation, redox balance and Ca2+ handling. Alterations in these processes lead to cell death and disease states. In the second part of this review, we discuss the role of mitochondrial dysfunctions in the specific context of hypercholesterolemia-induced atherosclerosis. We provide a literature analysis that indicates a decisive role of mitochondrial redox dysfunction in the development of atherosclerosis and discuss the underlying molecular mechanisms. Finally, we highlight the potential mitochondrial-targeted therapeutic strategies that are relevant for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Metabolismo Energético , Humanos
11.
Biochem J ; 476(24): 3769-3789, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31803904

RESUMO

The atherosclerosis prone LDL receptor knockout mice (Ldlr-/-, C57BL/6J background) carry a deletion of the NADP(H)-transhydrogenase gene (Nnt) encoding the mitochondrial enzyme that catalyzes NADPH synthesis. Here we hypothesize that both increased NADPH consumption (due to increased steroidogenesis) and decreased NADPH generation (due to Nnt deficiency) in Ldlr-/- mice contribute to establish a macrophage oxidative stress and increase atherosclerosis development. Thus, we compared peritoneal macrophages and liver mitochondria from three C57BL/6J mice lines: Ldlr and Nnt double mutant, single Nnt mutant and wild-type. We found increased oxidants production in both mitochondria and macrophages according to a gradient: double mutant > single mutant > wild-type. We also observed a parallel up-regulation of mitochondrial biogenesis (PGC1a, TFAM and respiratory complexes levels) and inflammatory (iNOS, IL6 and IL1b) markers in single and double mutant macrophages. When exposed to modified LDL, the single and double mutant cells exhibited significant increases in lipid accumulation leading to foam cell formation, the hallmark of atherosclerosis. Nnt deficiency cells showed up-regulation of CD36 and down-regulation of ABCA1 transporters what may explain lipid accumulation in macrophages. Finally, Nnt wild-type bone marrow transplantation into LDLr-/- mice resulted in reduced diet-induced atherosclerosis. Therefore, Nnt plays a critical role in the maintenance of macrophage redox, inflammatory and cholesterol homeostasis, which is relevant for delaying the atherogenesis process.


Assuntos
Aterosclerose/metabolismo , Macrófagos Peritoneais/metabolismo , NADP/metabolismo , Estresse Oxidativo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Biomarcadores , Antígenos CD36/metabolismo , Dieta Hiperlipídica , Regulação da Expressão Gênica , Genótipo , Glutationa/metabolismo , Inflamação , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mutação , NADP Trans-Hidrogenases , Receptores de LDL/genética , Superóxidos/metabolismo
12.
Anal Bioanal Chem ; 411(17): 3763-3768, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31093698

RESUMO

We describe a chip calorimetric technique that allows the investigation of biological material under anoxic conditions in a micro-scale and in real time. Due to the fast oxygen exchange through the sample flow channel wall, the oxygen concentration inside the samples could be switched between atmospheric oxygen partial pressure to an oxygen concentration of 0.5% within less than 2 h. Using this technique, anaerobic processes in the energy metabolism of Trypanosoma cruzi could be studied directly. The comparison of the calorimetric and respirometric response of T. cruzi cells to the treatment with the mitochondrial inhibitors oligomycin and antimycin A and the uncoupler FCCP revealed that the respiration-related heat rate is superimposed by strong anaerobic contributions. Calorimetric measurements under anoxic conditions and with glycolytic inhibitors showed that anaerobic metabolic processes contribute from 30 to 40% to the overall heat production rate. Similar basal and antimycin A heat rates with cells under anoxic conditions indicated that the glycolytic rates are independent of the oxygen concentration which confirms the absence of the "Pasteur effect" in Trypanosomes. Graphical abstract.


Assuntos
Calorimetria/métodos , Metabolismo Energético , Dispositivos Lab-On-A-Chip , Trypanosoma cruzi/metabolismo , Anaerobiose , Antimicina A/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Glicólise/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oligomicinas/farmacologia , Oxigênio/metabolismo , Ionóforos de Próton/farmacologia
13.
Mol Biol Cell ; 30(14): 1676-1690, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091170

RESUMO

We report here that Trypanosoma cruzi, the etiologic agent of Chagas disease, possesses two unique paralogues of the mitochondrial calcium uniporter complex TcMCU subunit that we named TcMCUc and TcMCUd. The predicted structure of the proteins indicates that, as predicted for the TcMCU and TcMCUb paralogues, they are composed of two helical membrane-spanning domains and contain a WDXXEPXXY motif. Overexpression of each gene led to a significant increase in mitochondrial Ca2+ uptake, while knockout (KO) of either TcMCUc or TcMCUd led to a loss of mitochondrial Ca2+ uptake, without affecting the mitochondrial membrane potential. TcMCUc-KO and TcMCUd-KO epimastigotes exhibited reduced growth rate in low-glucose medium and alterations in their respiratory rate, citrate synthase activity, and AMP/ATP ratio, while trypomastigotes had reduced ability to efficiently infect host cells and replicate intracellularly as amastigotes. By gene complementation of KO cell lines or by a newly developed CRISPR/Cas9-mediated knock-in approach, we also studied the importance of critical amino acid residues of the four paralogues on mitochondrial Ca2+ uptake. In conclusion, the results predict a hetero-oligomeric structure for the T. cruzi MCU complex, with structural and functional differences, as compared with those in the mammalian complex.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Interações Hospedeiro-Patógeno , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Canais de Cálcio/química , Sequência Conservada , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mutagênese , Mutação/genética , Fenótipo , Subunidades Proteicas/química , Proteínas de Protozoários/química
14.
mBio ; 10(3)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064825

RESUMO

The mitochondrial Ca2+ uptake in trypanosomatids, which belong to the eukaryotic supergroup Excavata, shares biochemical characteristics with that of animals, which, together with fungi, belong to the supergroup Opisthokonta. However, the composition of the mitochondrial calcium uniporter (MCU) complex in trypanosomatids is quite peculiar, suggesting lineage-specific adaptations. In this work, we used Trypanosoma cruzi to study the role of orthologs for mitochondrial calcium uptake 1 (MICU1) and MICU2 in mitochondrial Ca2+ uptake. T. cruzi MICU1 (TcMICU1) and TcMICU2 have mitochondrial targeting signals, two canonical EF-hand calcium-binding domains, and localize to the mitochondria. Using the CRISPR/Cas9 system (i.e., clustered regularly interspaced short palindromic repeats with Cas9), we generated TcMICU1 and TcMICU2 knockout (-KO) cell lines. Ablation of either TcMICU1 or TcMICU2 showed a significantly reduced mitochondrial Ca2+ uptake in permeabilized epimastigotes without dissipation of the mitochondrial membrane potential or effects on the AMP/ATP ratio or citrate synthase activity. However, none of these proteins had a gatekeeper function at low cytosolic Ca2+ concentrations ([Ca2+]cyt), as occurs with their mammalian orthologs. TcMICU1-KO and TcMICU2-KO epimastigotes had a lower growth rate and impaired oxidative metabolism, while infective trypomastigotes have a reduced capacity to invade host cells and to replicate within them as amastigotes. The findings of this work, which is the first to study the role of MICU1 and MICU2 in organisms evolutionarily distant from animals, suggest that, although these components were probably present in the last eukaryotic common ancestor (LECA), they developed different roles during evolution of different eukaryotic supergroups. The work also provides new insights into the adaptations of trypanosomatids to their particular life styles.IMPORTANCETrypanosoma cruzi is the etiologic agent of Chagas disease and belongs to the early-branching eukaryotic supergroup Excavata. Its mitochondrial calcium uniporter (MCU) subunit shares similarity with the animal ortholog that was important to discover its encoding gene. In animal cells, the MICU1 and MICU2 proteins act as Ca2+ sensors and gatekeepers of the MCU, preventing Ca2+ uptake under resting conditions and favoring it at high cytosolic Ca2+ concentrations ([Ca2+]cyt). Using the CRISPR/Cas9 technique, we generated TcMICU1 and TcMICU2 knockout cell lines and showed that MICU1 and -2 do not act as gatekeepers at low [Ca2+]cyt but are essential for normal growth, host cell invasion, and intracellular replication, revealing lineage-specific adaptations.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/genética , Adaptação Fisiológica , Transporte Biológico , Sistemas CRISPR-Cas , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions , Citosol/química , Citosol/metabolismo , Técnicas de Inativação de Genes , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Protozoários/genética , Trypanosoma cruzi/patogenicidade
15.
Cancer Med ; 8(5): 2020-2030, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977273

RESUMO

The protective antioxidant activity of acetylcysteine (NAC) against toxicity due to cisplatin has been reported in experimental models; however, its efficacy in patients has not been elucidated. The aim of this study was to investigate the possible protective effect of NAC on cisplatin-induced toxicity and the effect of NAC on clinical response and oxidative stress in patients treated for head and neck cancer. This was a randomized, double-blind, placebo-controlled trial conducted in patients receiving high-dose cisplatin chemotherapy concomitant to radiotherapy. Patients were randomly assigned to groups and received: (a) 600 mg NAC syrup, orally once daily at night for 7 consecutive days or (b) placebo, administered similarly to NAC. Nephro-, oto-, hepato-, myelo-, and gastrointestinal toxicities, clinical responses, and plasma and cellular markers of oxidative stress were evaluated. Fifty-seven patients were included (n = 28, NAC arm; and n = 29, placebo arm). A high prevalence of most types of toxicities was observed after cisplatin chemotherapy; however, the parameters were similar between the two groups. There was a predominance of partial response to treatment. In the cellular and plasmatic oxidative stress analyses, minor differences were observed. Overall, there was no statistically significant difference between the groups for all outcomes. These findings show that low-dose oral NAC does not protect patients with head and neck cancer from cisplatin-induced toxicities and oxidative stress. The antitumor efficacy of cisplatin was apparently not impaired by NAC.


Assuntos
Acetilcisteína/administração & dosagem , Cisplatino/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Neoplasias de Cabeça e Pescoço/terapia , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Administração Oral , Idoso , Quimiorradioterapia/efeitos adversos , Cisplatino/uso terapêutico , Método Duplo-Cego , Esquema de Medicação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
16.
J Biol Chem ; 293(45): 17402-17417, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30232153

RESUMO

In vertebrate cells, mitochondrial Ca2+ uptake by the mitochondrial calcium uniporter (MCU) leads to Ca2+-mediated stimulation of an intramitochondrial pyruvate dehydrogenase phosphatase (PDP). This enzyme dephosphorylates serine residues in the E1α subunit of pyruvate dehydrogenase (PDH), thereby activating PDH and resulting in increased ATP production. Although a phosphorylation/dephosphorylation cycle for the E1α subunit of PDH from nonvertebrate organisms has been described, the Ca2+-mediated PDP activation has not been studied. In this work, we investigated the Ca2+ sensitivity of two recombinant PDPs from the protozoan human parasites Trypanosoma cruzi (TcPDP) and T. brucei (TbPDP) and generated a TcPDP-KO cell line to establish TcPDP's role in cell bioenergetics and survival. Moreover, the mitochondrial localization of the TcPDP was studied by CRISPR/Cas9-mediated endogenous tagging. Our results indicate that TcPDP and TbPDP both are Ca2+-sensitive phosphatases. Of note, TcPDP-KO epimastigotes exhibited increased levels of phosphorylated TcPDH, slower growth and lower oxygen consumption rates than control cells, an increased AMP/ATP ratio and autophagy under starvation conditions, and reduced differentiation into infective metacyclic forms. Furthermore, TcPDP-KO trypomastigotes were impaired in infecting cultured host cells. We conclude that TcPDP is a Ca2+-stimulated mitochondrial phosphatase that dephosphorylates TcPDH and is required for normal growth, differentiation, infectivity, and energy metabolism in T. cruzi Our results support the view that one of the main roles of the MCU is linked to the regulation of intramitochondrial dehydrogenases.


Assuntos
Doença de Chagas/enzimologia , Metabolismo Energético , Cetona Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Linhagem Celular , Doença de Chagas/genética , Doença de Chagas/patologia , Técnicas de Silenciamento de Genes , Humanos , Cetona Oxirredutases/genética , Fosforilação/genética , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética
17.
Free Radic Biol Med ; 129: 1-24, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30172747

RESUMO

Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.


Assuntos
Aterosclerose/metabolismo , Cálcio/metabolismo , Diabetes Mellitus/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Obesidade/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Cátions Bivalentes , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Humanos , Transporte de Íons , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Obesidade/genética , Obesidade/patologia , Oxirredução , Fosforilação Oxidativa , Permeabilidade , Espécies Reativas de Nitrogênio/metabolismo , Transdução de Sinais
18.
Front Pharmacol ; 9: 685, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997512

RESUMO

Statins are the preferred therapy to treat hypercholesterolemia. Their main action consists of inhibiting the cholesterol biosynthesis pathway. Previous studies report mitochondrial oxidative stress and membrane permeability transition (MPT) of several experimental models submitted to diverse statins treatments. The aim of the present study was to investigate whether chronic treatment with the hydrophilic pravastatin induces hepatotoxicity in LDL receptor knockout mice (LDLr-/-), a model for human familial hypercholesterolemia. We evaluated respiration and reactive oxygen production rates, cyclosporine-A sensitive mitochondrial calcium release, antioxidant enzyme activities in liver mitochondria or homogenates obtained from LDLr-/- mice treated with pravastatin for 3 months. We observed that pravastatin induced higher H2O2 production rate (40%), decreased activity of aconitase (28%), a superoxide-sensitive Krebs cycle enzyme, and increased susceptibility to Ca2+-induced MPT (32%) in liver mitochondria. Among several antioxidant enzymes, only glucose-6-phosphate dehydrogenase (G6PD) activity was increased (44%) in the liver of treated mice. Reduced glutathione content and reduced to oxidized glutathione ratio were increased in livers of pravastatin treated mice (1.5- and 2-fold, respectively). The presence of oxidized lipid species were detected in pravastatin group but protein oxidation markers (carbonyl and SH- groups) were not altered. Diet supplementation with the antioxidants CoQ10 or creatine fully reversed all pravastatin effects (reduced H2O2 generation, susceptibility to MPT and normalized aconitase and G6PD activity). Taken together, these results suggest that 1- pravastatin induces liver mitochondrial redox imbalance that may explain the hepatic side effects reported in a small number of patients, and 2- the co-treatment with safe antioxidants neutralize these side effects.

19.
Cell Biol Int ; 42(6): 742-746, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29424467

RESUMO

Mitochondrial redox imbalance and high Ca2+ uptake induce the opening of the permeability transition pore (PTP) that leads to disruption of energy-linked mitochondrial functions and triggers cell death in many disease states. In this review, we discuss the major results from our studies investigating the consequences of NAD(P)-transhydrogenase (NNT) deficiency, and of statins treatment for mitochondrial functions and susceptibility to Ca2+ -induced PTP. We highlight the aggravation of high fat diet-induced fatty liver disease in the context of NNT deficiency and the role of antioxidants in the prevention of statins toxicity to mitochondria.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NADP Trans-Hidrogenases/genética , Animais , Dieta Hiperlipídica , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/veterinária , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , NADP Trans-Hidrogenases/metabolismo , Permeabilidade/efeitos dos fármacos , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo
20.
Cell Biol Int ; 42(6): 747-753, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29427465

RESUMO

Cardiovascular diseases are major causes of death worldwide. Beyond the classical cholesterol risk factor, other conditions such as oxidative stress are well documented to promote atherosclerosis. The Mangifera indica L. extract (Vimang®) was reported to present antioxidant and hypocholesterolemic properties. Thus, here we evaluate the effects of Vimang treatment on risk factors of the atherosclerosis prone model of familial hypercholesterolemia, the LDL receptor knockout mice. Mice were treated with Vimang during 2 weeks and were fed a cholesterol-enriched diet during the second week. The Vimang treated mice presented significantly reduced levels of plasma (15%) and liver (20%) cholesterol, increased plasma total antioxidant capacity (10%) and decreased reactive oxygen species (ROS) production by spleen mononuclear cells (50%), P < 0.05 for all. In spite of these benefits, the average size of aortic atherosclerotic lesions stablished in this short experimental period did not change significantly in Vimang treated mice. Therefore, in this study we demonstrated that Vimang has protective effects on systemic and tissue-specific risk factors, but it is not sufficient to promote a reduction in the initial steps of atherosclerosis development. In addition, we disclosed a new antioxidant target of Vimang, the spleen mononuclear cells that might be relevant for more advanced stages of atherosclerosis.


Assuntos
Colesterol/sangue , Mangifera/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptores de LDL/genética , Animais , Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/veterinária , Colesterol/análise , Dieta Hiperlipídica , Leucócitos/citologia , Leucócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mangifera/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , NADP/química , NADP/metabolismo , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/deficiência , Triglicerídeos/análise , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...